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A study is made of the internal energy of a simple fluid, and its derivative with respect to 
particle number at constant temperature and volume. This derivative occurs in a formula 
linking energy and particle number fluctuations to the specific heat, and may be calculated 
exactly for the Ising and certain other models along the critical isochore. Experimental 
results for fluid Argon are compared with the description provided by van der Waals’ equa- 
tion, which is able to predict within 5% the slope of the loci in the density-temperature 
plane along which the internal energy and its particle number derivative vanish. 

1 INTRODUCTION 

The thermodynamic properties of a simple fluid usually studied include the 
total internal energy U, the entropy S and their various derivatives, such as 
the specific heats at constant volume and at constant pressure. However, 
recent investigation of a formula, derivable from statistical mechanics, 
linking equilibrium fluctuations in energy and particlenumber, indicates that 
the energy density is an interesting quantity. Whereas the total energy U 
decreases monotonically along isotherms as the density is increased, the 
energy density (U/V) exhibits a maximum. The locus of maxima can readily 
be calculated from an equation of state, such as van der Waals’ equation, 
via the derivative (aU/an), of U with respect to the number of moles n 
of material present, holding the temperature and volume fixed. In addition,’ 

where N = nN, is the number of particles, and No is Avogadro’s number. 

TResearch supported in part by the National Research Council of Canada through grant 
no. NRC-A6595. 
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238 J .  STEPHENSON 

The derivative ( a U / a N b  describes the way in which the internal energy 
changes with particle number at fixed T and V. This same derivative occurs 
in the fluctuation formula linking energy and particle number fluctuations 
in the grand canonical ensemble. The constant volume spzcific heat CnV 
depends on the dfleerence between energy and particle number fluctuations, 
and yet must be positive, by the usual thermodynamic stability criteria. 
Moreover, the derivative (aU/aN), can be calculated explicitly along the 
critical isochore for certain model systems, such as the king and anisotropic 
Heisenberg models, when transcribed for fluids, with different results for 
classical and quantum systems. In contrast to the specific heat, one finds 
(sU/an), to be analytic in temperature along the critical isochore, an 
observation whch is confirmed experimentally, and which is incorporated 
in the scaling law equation of state for fluids through assumptions on the 
behaviour of the chemical potential along the critical isochore. In addition 
it is of interest to  determine the loci along which U and (arJ/an), vanish. 
Calculations for fluid Argon show that these loci, in the density-temperature 
plane, are very nearly straight lines, with (dimensionless) slopes in remark- 
ably close agreement with the values 4/3 and 2/3 respectively, predicted by 
van der Wads’ equation. The equation of state for Argon used here is that 
fitted by Gosman, McCarty and Hust. 

We shall establish certain elementary thermodynamic properties of U 
and (aU/sn), in section 2, and then discuss in turn their calculation for 
model systems in section 3, for van der Wads’ equation in section 4, and for 
fluid Argon in Section 5. 

2 SOME PROPERTIES OF U AND (aU/h), 

First we recall from elementary thermodynamics the well-known expres- 
sion for the volume derivative of the internal energy at h c d  temperature 
and constant number of moles, n: 

This derivative is related to the Joule coefficient which describes the tem- 
perature change occurring when free expansion of a fluid takes place:2 

Joule coefficient = (g) nU = [P - T (g) n j / C , v .  

The Joule coefficient is negative for fluids, and (aU/aV),, is positive. 
Next we note that the derivative of the internal energy with respect to 

the number of moles of fluid at fixed temperature T and volume V is given 
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THE INTERNAL ENERGY OF A SIMPLE FLUID 239 

by: 

(g)m = P - T($) nV 9 

(2.3) 
where p is the chemical potential, or Gibbs function per mole. Also 

(%)n= (:) + (#(%)"" - .]. 
in which the second term on the right hand side is derived from (2.1) above. 
(2.3) is easily established by combining the second law of thermodynamics, 

dU = TdS - PdV + pdn, (2.5) 
with the Maxwell relation 

which follows from the perfect differential for the Helmholtz free energy 
F (sometimes denoted by A): 

dF = - SdT - PdV + pdn. (2.7) 

(2.8) 

(2.9) 

Then (2.4) follows on using 

pn = U - TS + PV, 

and the Gibbs-Duhem equation 

ndp = -SdT + VdP, 

to evaluate the right hand side of (2.3). Alternatively one can derive (2.4) 
directly from (2.1). 

The derivative (aU/aN), occurs in the fluctuation formularelating energy 
and particle number fluctuations in the grand canonical ensemble. It is a 
straightforward exercise in statistical mechanics3 (see appendix A) to verify 
that 

(du)z= kBTZCnV + (g)' (dN)2 
Tv 

(2 .  lo) 

where AU and AN denote deviations from the mean values U and N. As we 
shall see below, (aU/aN),-,, is smoothly varying throughout the homogeneous 
phase of a simple fluid, and is finite at the critical point. Equation (2.10) 
tells us that energy fluctuations diverge strongly at the critical point, in the 
same manner as particle number fluctuations, which are related to the iso- 
thermal compressibility. The specific heat at constant volume is only weakly 
divergent and depends on the difference between energy and particle 
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240 J .  STEPHENSON 

number fluctuations. It is interesting to contrast the situation here in the 
grand canonical ensemble with that in the canonical ensemble, where the 
second term on the right hand side of (2.10) is absent, and energy fluctua- 
tions diverge weakly like the specific heat. Along the locus where (3UlaNXy 
vanishes, the specific heat depends only on energy fluctuations. 

3 S I N G  AND HEISENBERG MODELS 

The derivative ( C ~ U / L J N ) ~  can be calculated along the critical isochore for 
the king and Heisenberg models, transcribed for fluids,',' because there are 
explicit expressions for the chemical potential p ( p c ,  T) as a function of 
temperature. 

For the Ising model 

where 

P* 
P c  
P m u  
d = dimension, 
kll = Boltzmann's constant, 
A = h/(2nm kB T)' 1 2 ,  

h = Planck's constant 
m = mass of particle 

= chemical potential per particle, p/N,,, 
= critical particle number density, 
= maximum particle number density, 

d(0) = r')  
1' 

u ( r ,  r') = interparticle potential 

Then using (2.3), 

where N is the particle number. (aU/aN), is the sum of kinetic and potential 
energy terms. From the equivalence between fluid and magnetic models 
(see appendix B), 

u( r ,  r ' )  = - 21, ( r ,  r ' )  (3-3) 
where J ,  is the corresponding magnetic interaction energy between z- 
components of spins with S = f on lattice sites r and r'. A mean-field 
treatment of the Ising model yields an upper bound T,, to the critical 
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THE INTERNAL ENERGY OF A SIMPLE FLUID 

temperature T,, given by 

1 
4 -ii(O) 

so 

(g)Tv = FdkBT 1 - 2kBT,,. 

24 1 

(3.4) 

(3.5) 

At the king model critical point in two or three dimensions, T, < T,, , so 
(aU/aN), is negative at the critical point, increases linearly along the 
critical isochore, and changes sign above T, at a temperature of (4T,,/d). 
It is to be noted that (aU/an), is analytic (linear) in temperature along the 
critical isochore,6 in contrast to the internal energy itself, U, and its temper- 
ature derivative C,, which is singular at the critical point. 

For the anisotropic Heisenberg model (see appendix B) 

p*(pc, T) = tii(0) + (h2d/4xzma2) 

where a is the lattice spacing and the other symbols are as defined previously. 
For a nearest neighbour lattice model with coordination number q and 
interaction energies J ,  and J,, 

(3.6) 

¶ J l l  = - t w ,  (3.7) 

qJ, = (h2d/4xZmaZ). (3.8) 
so 

and is independent of temperature. For a classical lattice gas, J, Q J,, 
and (aU/aN), is negative, whereas for a quantum lattice gas, J, B J,, , and 
(BU/aN), is‘positive. This suggests that He4 near its lambda line, which is 
where this model is usually applied, may. have positive values for (aU/aN),, 
a matter which deserves further investigation. 

4 VAN DER WAALS’ EQUATION 

In this section we discuss the predictions of van der Waals’ equation, es- 
pecially in connection with the loci along which U and (aU/an), vanish. 
Van der Waals’ equation for n moles is 

nRT anz p=--- 
V - n b  V Z ’  
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242 J .  STEPHENSON 

The critical parameters in terms of c1 and b are 

P, = a/27b1 

Vc = 3nb  

T, = 8aI27bR 

so that 

a = 9RT,VC/8n 

b = V,/3n. 

Employing equation (2. I ) ,  we have 

an2 (%)"T = v' 

(4.2) 

(4.3) 

(4.4) 

whence by integration, adding the ideal gas kinetic energy at infinite 
volume, 

3 an2 
2 V U = - n R T  - -. 

As mentioned in the introduction, the energy per mole 

(4.5) 

decreases linearly as the molar density p = n/V increases along any iso- 
therm. By contrast, the energy density 

is parabolic in density along an isotherm, and has a maximum located by the 
vanishing of 

The locus of maxima of the energy density in the p-T plane is therefore 

whch may be compared with the locus U = 0, given by 

(4.9) 

(4.10) 
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THE INTERNAL ENERGY OF A SIMPLE FLUID 243 

The dimensionless slopes of these loci are 2/3 and 4/3 respectively, a result 
which will be of interest when we analyze a real fluid, Argon, in the next 
section. At the critical point 

U, = inRT, (4.11) 

which is unsatisfactory, since experiment indicates that U, is small and 
negative, and 

(4.12) 

FIGURE 1 Graphs of internal energy per mole ( U h )  in kilojoules/mole versus density 
(pip,) along isotherms for fluid Argon, using the equation of state fitted by Gosman et al.’ 
The critical point c, the gas and liquid branches of the coexistence curve g and 1 (dotted) 
and the melting curve rn are indicated. The isotherms are labelled with the appropriate values 
of T/T,. The dashed line indicates the loo0 atrnos. isobar. 
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244 J .  STEPHENSON 

which has the expected sign. Along the critical isochore, 

3 9 
4 

= -RT - -RTc. (4.13) 

which is qualitatively similar to (3.5), and vanishes at T = 4Tc. 
In general along any isochore, for van der Wads’ equation, graphs of U 

and (aUlau), versus temperature are parallel straight lines with common 
slope tR,  equal to the constant classical value of Cv. The van der Wads’ 
equation does not account for a divergence in C, at the critical point. 

FIGURE 2 Graphs of internal energy per unit volume (U/V) in kilojoules/litre versus 
density ( p l p , )  along isotherms for fluid Argon, using the equation of state fitted by Gosman 
et al.’ The isotherms are labelled with the appropriate values of T/Tc. Note that U/V equals 
(molar density x internal energy per mole). 
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THE INTERNAL ENERGY OF A SIMPLE FLUID 245 

5 INTERNAL ENERGY OF ARGON 

Computation of the total internal energy and its derivative (aU/an), via 
equation (2.4) is straightforward once the equation of state is known. 
Gosman, McCarty and Hust' have fitted an equation of state to available P, 
p, T data, which is suitable for our present purpose. Theinternal energy per 
mole U/n and internal energy density U/V aregraphed asfunctionsofdensity 
( p / p c )  along isotherms in figures 1 and 2. Numerical results for U/n and 
(aulan), along the critical isochore are presented in Table 1.  Both these 
quantities are negative at the critical point, and increase approximately 
linearly with temperature, as illustrated in figure 3. The slope of the graph 
of (aU/an), versus T varies from approximately 19 joules/mole OK at the 
critical point through slowly decreasing values between 16.2 joules/mole OK 
at 1.5TC to 15.5 joules/mole°K at 2T,. The slope predicted by both the 
Ising model (3.5) and van der Waals' equation (4.13) is 3 R =J 12.5 joules/ 
mole O K .  The graph of U/n versus T along the critical isochore (figure 3) is 
roughly parallel to that of (aU/an), versus T, with a slope decreasing slowly 

TABLE 1 

Values of the internal energy per mole (Wn) and the 
derivative (aU/8n), in kilojoules per mole along the 
critical isochore of Argon, at temperature intervals of 

0.05 T,, with T, = 150.86"K. 

I .00 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.60 
1.65 
1.70 
1.75 
1.80 
1.85 
1.90 
1.95 
2.00 

- 498.5 
- 343.6 
- 197.5 
- 58.0 

76.2 
206.2 
332.8 
456.5 
577.9 
697.2 
814.8 
930.8 
1045.5 
1 158.9 
1271.3 
1382.6 
1493.1 
1602.7 
1711.6 
1819.8 
1927.3 

- 2340.2 
-2196.1 
-2057.6 
- 1923.1 
-1791.3 
- 1661.7 
- 1533.8 
- 1407.4 
- 1282.1 
-1157.9 
- 1034.7 
- 912.5 
- 791.1 
- 670.7 
- 551.0 
- 432.2 
- 314.1 
- 196.8 
- 
- 
- 
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2.0 

- kJ 
1.0 

0.5 

0 

-0.5 

-1.0 

- 1.5 

-2.C 

-2.5 

mole 

I .o 1.5 T/Tc 2.0 
FIGURE 3 Graphs of internal energy per mole (U/n) and its derivative (i?U/an), in kilo- 
joules/mole versus temperature (T/Tc ) along the critical isochore for Argon, using the 
equation of state fitted by Gosman et al.' The graphs are roughly parallel, as expected from 
van der Waals' equation. 

from 20.5 joules/mole"K at the mitical point to 15.4 joules/mole"K at 
lST, and 14.2 joules/mole"K at 2Tc. Obviously, neither the equation of 
state fitted to Argon data by Gosman et al, nor the van der Waals' equation 
accounts for a divergence in C, at the critical point. 

The locus of energy density maxima, derived from the condition 
(aulan), = 0, is plotted in figure 4, whch shows the p-T plane. The locus 
U = 0 is also drawn. These loci are practically straight lines of dimension- 
less slopes 2/3 and 4/3 respectively, to roughly 5% or better, in remarkable 
agreement with the predictions of van der Wads' equation, (4.9,4.10). 
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THE INTERNAL ENERGY OF A SIMPLE FLUID 247 

I " " ' " "  1 1 1 1  

I I I I I  1 1 1 1  

" 0 5  1.0 1.5 T / T ~  2.0 

FlGURE 4 p-T plane for Argon, with loci along which the internal energy U and its 
derivative (aL!/anh vanish, as calculated from the equation of state fitted by Gosman et al. 
The dimensionless slopes are roughly 4/3 and 2/3 respectively, close to the values pre- 
dicted by van der Waals' equation. The critical point c, the gas and liquid branches ofthe 
coexistence curve, g and 1, and the melting curve m are indicated. 

The main conclusions and results presented in this paper are summarized 
in the introduction and abstract. For more detailed calculations ofthe ther- 
modynamic properties of Argon, with special emphasis on loci of maxima 
and minima, consult references 8 and 9. 

Appendix A 

To prove (2.10) it is best to proceed by the methods outlined by Gibbs.lo 
Setting 

and z = elJkBT, (A])  
-'IkBT y = e  

so y and z are moduli associated with the grand canonical distribution, we 
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248 J .  STEPHENSON 

have immediately, suppressing the constant volume subscript, 

together with the useful relation, which is a restatement of (2.3), 

(z) = (-)(:) (5)” 
Then directly, 

which on substitution for y from (Al) gives the desired fluctuation relation 
(2.10). 

Appendix B 

The Hamiltonian for the anisotropic Heisenberg model with spins S, = 
(Sf, S), S:)  at lattice sites r, in a magnetic field H ,  is(‘.’) 

nn = - 2  c [JI (r,f)(S:S:, + SlS;) t J ,  (r,r’>S,?S,‘.] - gpE:z S; H .  
< r , r , >  , 

(B1) 
The desired rules of transcription from magnetic to fluid model are 
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THE INTERNAL ENERGY OF A SIMPLE FLUID 249 

where 

p* = chemical potential per particle, 

vo = volume per lattice site, 

p = particle number density. 
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